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ABSTRACT: A novel Bayesian Monte Carlo integration (BMCI) technique was developed to retrieve geophysical vari-

ables from satellite microwave radiometer data in the presence of tropical cyclones. The BMCI technique includes three

steps: generating a stochastic database, simulating satellite brightness temperatures using a radiative transfer model, and

retrieving geophysical variables such as profiles of temperature, relative humidity, and cloud liquid and ice water content

from real observations. The technique also provides uncertainty estimates for each retrieval and can output the error

covariancematrix of selected parameters. Themeasurements from theAdvanced TechnologyMicrowave Sounder (ATMS)

on board Suomi National Polar-Orbiting Partnership (Suomi NPP) and the Global Precipitation Measurement (GPM)

Microwave Imager (GMI) were used as input. A new technique was developed to correct the ATMS andGMI observations

for the beam-filling effect, which is due to small-scale variability of precipitation and clouds when compared with the

instrument footprint and also the nonlinear relation between the brightness temperature and precipitation. In addition, the

assimilation of the BMCI retrievals into the NASA GEOS model is discussed for Hurricane Maria. The results show that

assimilating the BMCI retrievals can influence the dynamical features of the cyclone, including a stronger warm core, a

symmetric eye, and vertically aligned wind columns. Two possible factors that may limit the impact of the BMCI retrievals

include 1) the resolution of the model (about 25 km), which was too coarse to show the potential of the BMCI data in

improving the representation of tropical storms in the model forecast, and 2) the data assimilation system not being able to

consider vertically correlated observation errors.

KEYWORDS: Tropical cyclones; Radiative transfer; Microwave observations; Bayesian methods; Numerical weather

prediction/forecasting; Data assimilation

1. Introduction

Despite the importance of clouds and their influence on

atmospheric water and energy balance, numerical weather

prediction (NWP) centers to a large extent exclude cloud in-

formation from the assimilation process and only assimilate

clear-sky radiances (Janisková et al. 2012). In the clear-sky

data assimilation systems, in order to ensure that only clear-sky

radiances are assimilated, strict cloud detection thresholds are

applied before the radiances are considered in the data as-

similation (DA) solution. This process not only excludes a

large portion of satellite radiances, but causes loss of infor-

mation in the regions that are of high interest to meteorologists

and are most challenging for weather forecasts (Errico et al.

2007; Haddad et al. 2015). Although, in recent years there has

been great advances in the operational weather forecasting, the

prediction of tropical cyclones, especially the intensity of

tropical cyclones, remains challenging. According to Aksoy

et al. (2013), in addition to the model deficiencies, another

important factor that contributes to this challenge includes lack

of observations in the peripheral environment (rainbands) of

tropical cyclones mainly because of the selective assimilation

of existing observations. Satellite observations provide more

than 90% of the input data for the initialization of NWP

models, but more than 75% of satellite observations are dis-

carded due to cloud contamination as well as land, snow, and

ice emissivity issues (Bauer et al. 2010). As expected, excluding

cloud contaminated observations causes a significant lack of

satellite data in the rainbands of tropical cyclones.Measurements

from infrared instruments are restricted in the presence of

convective clouds and thus do not provide much information

on the state of the atmosphere. However, microwave mea-

surements are less sensitive to clouds and are capable of pro-

viding information even in the presence of deep convective

clouds such as in the case of tropical cyclones.

Two techniques that can be used to assimilate satellite

cloudy radiances into NWP models are (i) direct assimilation

using a radiative transfer (RT) model, also known as a forward

model, and (ii) first retrieving atmospheric state variables such

as temperature and humidity from satellite radiances and then

assimilating retrieved products.

a. Direct assimilation of all-sky radiances

The main advantage of direct assimilation is that observa-

tions from all satellite instruments can be assimilated using a

single fast radiative transfer model without intermediate re-

trieval. Since the early twenty first century, direct assimilation
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of clear-sky satellite radiances has become a routine practice at

NWP centers owing to progresses in fast radiative transfer

models. However, direct assimilation of cloudy radiances is

limited by several factors, including inaccuracy in the radiative

transfer scattering calculations, lack of a close first guess in

cloudy conditions, nonlinearity in microphysical and radiative

parameterizations, and displacement of clouds in the first guess

provided by NWP models. In particular, assimilating obser-

vations from high frequency microwave channels operating at

89GHz and above is more challenging than low frequency

channels operating around 50GHz and below, because the

errors for radiative transfer scattering calculations are much

larger for ice particle scattering that dominates the high fre-

quency channels. However, previous studies show that assim-

ilating such observations can lead to improvements in the

dynamical state of the atmosphere (Geer et al. 2017).

Geer and Bauer (2010) developed a piecewise method for

calculating the observation error in order to assimilate micro-

wave all-sky observations from channels operating below

90GHz into the ECMWF model. The model starts with a

constant small error for the clear-sky radiances and a much

higher constant error for the radiances affected by deep-clouds

and rain, then interpolates between the two for other condi-

tions. The upper limit of the errors reported in Table 1 of Geer

and Bauer (2010) are relevant to tropical cyclone cases with

deep convective clouds. If we ignore the channels with a very

large observation error, which was used to avoid assimilating

such channels, the error for the channels that have actually

been assimilated is mostly above 20K. The same observation

model was used by Geer and Baordo (2014) and Zhu et al. (2016)

for the assimilation of the Advanced Microwave Sounding

Unit-A (AMSU-A) channels (channels 1–4, and 15), and

Migliorini and Candy (2019) for the assimilation of AMSU-A

channels 4 and 5. Zhu et al. (2016) used an observation error of

20, 18, 12, 3, and 15K for channels 1, 2, 3, 4, and 15, respec-

tively, when cloud liquid water path exceed a threshold (opti-

cally thick clouds). To reduce the negative impact from the

assimilation of all-sky observations due to error in the input

provided by the NWPmodel, error in RT calculations, and also

interpolation error, Zhu et al. (2016) further inflated the ob-

servation error by the absolute of observation minus forecast

(omf) values. Overall, all-sky assimilation increased the usage

of AMSU-A radiances by 10%–12%. The results showed

neutral to slightly positive impact on global forecast skills.

Migliorini and Candy (2019) used a similar observation error

model to assimilate AMSU-A Channels 4 and 5 into a global

model. Migliorini and Candy (2019) reported deviation from

Gaussianity in the omf distributions that can be corrected by

eliminating cases with low or high liquid water path values.

Migliorini and Candy (2019) reported generally some positive

improvements and attributed the improvement to the exclu-

sion of radiances in the presence of high liquid water path

values (i.e., convective clouds).

In addition to inflating the observation error (Geer and

Bauer 2010; Geer et al. 2014; Zhu et al. 2016), the variational

bias correction schemes used at the NWP centers, which de-

pend on the difference between calculated and observed

values, exclude the observations when the forward model is

not able to simulate them with enough accuracy (Baordo and

Geer 2015; Bauer et al. 2010). This in some cases limits the

assimilation of cloud affected radiances to nonprecipitating

shallow clouds to avoid the adverse effect on the global fore-

cast skills, which eliminates the majority of the observations

over the rainbands of tropical cyclones (Zhu et al. 2016;

Migliorini and Candy 2019).

As stated in Bauer et al. (2006) and Bauer et al. (2010), the

limitations for the direct assimilation of all-sky radiances

over the rainbands of hurricanes are more significant for high

frequency microwave channels (e.g., channels operating at

89GHz and above) than for lower frequency channels, there-

fore direct assimilation of observations over the rainbands of

hurricanes using variational techniques is even much more

challenging for the high frequency channels. For the current

status of the assimilation of all-sky satellite observations at the

NWP centers, the readers are referred to Geer et al. (2018).

However, it should be noted that Geer et al. (2018) discusses

assimilation of all-sky observations from a global perspective,

while we discuss the specific case of assimilation of all-sky

observations over the rainbands of tropical cyclones.

b. Assimilation of retrieved profiles

The second technique for assimilation of cloudy radiances is

first retrieving state variables such as temperature and hu-

midity, and then assimilating retrieved profiles into the NWP

models. The main issue with this technique is that it requires

two separate steps and the DA results depend on the accuracy

of the retrieval technique as well as quantification of error

covariance matrices for the retrievals. In the past, the DA

communities have normally used variational techniques (known

as 1D-Var) to retrieve geophysical variables from satellite

observations. However, variational techniques depend on the

minimization of differences between simulated and observed

values, and thus suffer from the same issues mentioned for

direct assimilation of cloudy radiances. Weng et al. (2007)

used a 1D 1 3D-Var system to assimilate the AMSU-A ob-

servations into the NOAA Global Data Assimilation System.

They first retrieved temperature profiles from AMSU-A ob-

servations, then assimilated the retrieved profiles. Janisková
et al. (2012) employed a 1D-Var method to retrieve atmo-

spheric temperature and humidity profiles from CloudSat

measurements then assimilated the retrievals into the ECMWF

model. Another technique that has been used to retrieve

geophysical variables from satellite observations is the

Bayesian Monte Carlo integration (BMCI) technique. This

technique relies on developing a comprehensive retrieval da-

tabase; the method works satisfactory once such a database is

generated (Kummerow et al. 2001, 2015; Rydberg et al. 2009;

Evans et al. 2012, 2002). Some advantages of the BMCI ap-

proach over variational techniques are: (i) the retrievals only

depend on the observations and prior assumptions, but not the

NWPmodel fields, and thus displacement of clouds or biases in

the NWP fields do not affect the results; (ii) the BMCI re-

trievals do not require Jacobians of the radiative transfer

model or the adjoint of the NWP model, and therefore non-

linearity in the RT model does not affect the results; and (iii)

the uncertainty (error) covariance matrix of retrieved profiles
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of humidity and temperature can be estimated and used in the

assimilation process as pseudo-observation error. The BMCI

algorithm has successfully been used to retrieve cloud and

humidity profiles from spaceborne and airborne microwave

measurements (e.g., Evans et al. 2002; Rydberg et al. 2009;

Evans et al. 2012). Kidd and Huffman (2011), Elsaesser and

Kummerow (2015), Kummerow et al. (2015), andDuncan et al.

(2018) used similar techniques to derive precipitation from

passive microwave observations. The algorithm developed

by Kummerow et al. (2015) is known as Goddard profiling

algorithm (GPROF) and is used operationally at NASA to

retrieve precipitation frommicrowave instruments in theGPM

constellation.

We discuss the assimilation of all-weather observations of

Advanced Technology Microwave Sounder (ATMS) and the

GPM Microwave Imager (GMI) using the BMCI technique.

We first retrieve atmospheric state and cloud variables from

the ATMS/GMI observations and then assimilate the re-

trievals of temperature, humidity, and sea surface temperature

(SST) along with the estimated uncertainty into NASA’s

Global Earth Observing System (GEOS) forecast system.

Observations from GMI and ATMS microwave instruments

are used to examine the technique. These instruments measure

radiances at the frequencies in the range of 10–190GHz.

Previous studies have proven that even clear-sky radiances

from these instruments can substantially improve the forecast

for the track and intensity of hurricanes. For instance, Zou

et al. (2013) demonstrated the advantage of the assimilation

of ATMS clear-sky radiances into the Hurricane Weather

Research and Forecasting (HWRF) for improving the track

and intensity of four Atlantic hurricanes that made landfall in

2012. Zou et al. (2013) conducted two sets of assimilation ex-

periments with and without ATMS data and indicated that,

even in the case of Hurricane Sandy with an unusual track, the

assimilation of ATMS observations systematically improved

the forecast, especially in correcting an eastward bias in the

forecast for the Hurricane Sandy track. Zou et al. (2013) re-

ported that the forecast intensity error is reduced by assimi-

lating ATMS clear-sky radiances. They also indicated that

assimilation of ATMS clear-sky radiances reduces the error in

both maximum wind speed and minimum sea level pressure

forecasts. Caumont et al. (2010) used a similar technique to

retrieve humidity profiles from radar reflectivities and then

assimilated the retrieved profiles using a 3D-Var model.

However, instead of building a comprehensive a priori data-

base as we did in the proposed method, they employed the

first guess provided by the NWP model to generate the re-

trieval database. This technique was later used by Wattrelot

et al. (2014) for the assimilation of radar reflectivities, and

Duruisseau et al. (2019) to assimilate observations from a

passive microwave humidity sounder. The disadvantage of

using a model-provided first guess to generate the retrieval

database is that the model does not provide all of the inputs

required for the RT calculations, and therefore it encounters

the same issues mentioned before for the direct assimilation of

radiances. In addition, Caumont et al. (2010) assumed spheri-

cal particles for most hydrometer types and also constant er-

rors for the retrieved profiles during the assimilation process.

We focus on the assimilation of retrieved profiles over the

rainbands of Hurricane Maria. Since separating rainbands

from the relatively calm regions surrounded by the rainbands is

not possible, we use all of the observations over both the heavy

precipitating and relatively calm regions in our assimilation

process.

2. Satellite microwave instruments

The BMCI technique is applied to level-1b microwave ra-

diances from GPM/GMI and Suomi National Polar-Orbiting

Partnership (Suomi NPP) ATMS. ATMS has 22 channels op-

erating roughly between the frequency range of 23–190GHz

(Kim et al. 2014) and GMI has 13 channels operating roughly

between 10 and 190GHz (Draper et al. 2015). The ATMS

beamwidth is 5.28 for the first two channels, 2.28 for Channels
3–16, and 1.18 for Channels 17–22. The beamwidth for GMI

changes from 1.758 for the first two channels to 0.48 for

Channels 12 and 13. The ATMS and GMI orbits have different

altitudes and inclination so that for GMI each degree of

beamwidth corresponds to about a 10-km footprint size, but for

ATMS each degree is roughly equal to a 15-km footprint size.

Overall, observations from the 183GHz absorption feature

are sensitive to tropospheric humidity, ice clouds and frozen

precipitation and observations from 150GHz are sensitive to

scattering from precipitation-sized ice particles. As the fre-

quency decreases, below 90GHz, the measurements become

less sensitive to ice clouds and are mostly affected by hail and

raindrops.

ATMS observations from the temperature sounding chan-

nels are used to better constrain the retrievals of atmospheric

temperature. The weighting functions for the ATMS channels

operating in the frequency range of 50–60GHz mostly reside

above precipitating clouds (due to oxygen absorption), there-

fore they are not important for rain absorption or ice scatter-

ing. In addition, only very large ice particles found in deep

convection have significant brightness temperature depres-

sions around 30GHz, though ATMS channel 3 operating at

50.3GHz has a significant contribution from raindrops and

hail. The GMI channels on the other hand are generally de-

signed to have maximum sensitivity to precipitation and

clouds. A drawback of the GMI channel selection is that there

are no independent temperature sounding channels, but some

of the channels indirectly provide information on the atmo-

spheric temperature. For more information about the scatter-

ing properties in microwave frequencies, the reader is referred

to Kulie et al. (2010) as well as Ekelund and Eriksson (2019).

ATMS/NPP generally provides two overpasses each day

for a hurricane, one during the ascending and one during the

descending phase of the orbit. However, sinceGPM inclination

is 658, depending on the location of the storm, we may have

more than two overpasses per day. All GMI channels were

used in the BMCI retrievals; however, Channels 13, 14, and 15

of ATMS were not used because they have essentially no tro-

pospheric contribution to their weighting functions.We limited

the study to observations over ocean only, due to difficulties in

calculating emissivity over land at microwave frequencies. In

addition, calculating surface emissivity over frozen waters is
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not trivial, which introduces errors in near-surface retrievals

such as sea surface temperature, and therefore we limited

the study to the latitude band between 458S and 458N. This

should not introduce any problem for the current study as

the tropical cyclones normally form and dissipate within

this zone.

3. The 1D Bayesian retrieval method

a. Overview of method

The 1D Bayesian retrieval algorithm developed in Evans

et al. (2012) was extensively modified for use with lower mi-

crowave frequency sensing of tropical cyclones. The two main

parts of this algorithm are 1) the construction of a high-

dimensional prior probability density function (pdf) of atmo-

spheric properties, and 2) the hybrid BMCI and optimization

retrieval method.

The prior pdf is derived from satellite radar reflectivity

profiles combined with cloud and precipitation statistics from

in situ microphysical probes. Temperature and relative hu-

midity profiles associated with each CloudSat radar profile are

obtained from reanalysis datasets, though the humidity is

modified in the presence of hydrometeors. Relative humidity

adjustments in the presence of ice particles is described in

Evans et al. (2012); in the presence of liquid cloud, the relative

humidity varies between 1.0 and 1.002 linearly as a function of

cloud LWC until LWC reaches 2 gm22, thus preserving cor-

relation with cloud LWC. Radar reflectivity, including atten-

uation corrections, is combined with microphysical statistics to

stochastically generate one or more profiles of hydrometeor

properties for each radar profile.

The prior pdf is in the form of cumulative distribution

functions (CDFs) of each variable (e.g., profiles of tempera-

ture, relative humidity, and microphysical properties) and

empirical orthogonal functions (EOFs) made from rank cor-

relations between the variables. Using a function for the prior

pdf instead of the original radar profiles allows many more

profiles (e.g., 106) in the Monte Carlo integration and is the

only option for using an optimization-based retrieval. The at-

mospheric profile is represented by temperature and humidity

at specified levels and several microphysical variables for three

hydrometeor types in appropriate layers. The atmospheric

profile and surface properties are denotated by x
(k)
i for variable

i and radar derived profile k. Each variable xi is sorted inde-

pendently over the profiles to make the CDFs Di(xi), which

range from 0 to 1. A small amount of the information in the

joint distribution among all the xi is preserved in a kind of rank

correlation matrix between the variables. The ranks or prob-

abilities representing the variables are converted to standard

Gaussian deviates using

j
i
5F21[D

i
(x

i
)] , (1)

whereF is the cumulative distribution function of the standard

normal distribution. The covariance matrix from which the

EOFs are derived is calculated from these Gaussian deviates.

Since the Gaussian deviates ji have zero mean and unit vari-

ance, the covariance matrix is also the correlation matrix:

C
ij
5

1

N
prof

�
Nprof

k51
j
(k)
i j

(k)
j . (2)

The eigenvectors of the correlation matrix Cij are the EOFs,

and the EOF amplitudes are the square root of the eigenvalues.

Variables are generated stochastically from the CDF–EOF

prior pdf by 1) creating a vector of independent standard

Gaussian random deviates (j), 2) linearly transforming this

vector to correlated Gaussian variables z using the EOF am-

plitudes and eigenvectors, and 3) transforming the correlated

Gaussian variables using the CDFs to the geophysical vari-

ables. For example, the temperature and relative humidity at

each level is obtained from

x
i
5D21

i [F(z
i
)] , (3)

where D21
i is the inverse of the CDF for temperature or rela-

tive humidity for a particular level.

The microphysical variables that specify the gamma size

distribution for each hydrometeor type are the mass content,

mean mass-weighted equivalent sphere diameterDme, and the

mass weighted dispersion. The cloud droplets and raindrops

are assumed to be spherical. There are four types of ice hy-

drometeors (Evans et al. 2012): hexagonal plates and small

aggregates of plates, aggregates of spheres representing frozen

droplets and graupel, aggregates of 2D dendrites represent-

ing snowflakes, and large solid spheres representing hail.

Nonspherical particle scattering is calculated using the discrete

dipole approximation. One-dimensional radiative transfer is

calculated for radiometeors using ‘‘SHDOMPPDA’’ (Evans

2007) with four discrete ordinates. Molecular absorption over

the channel spectral responses is calculated using ‘‘MonoRTM’’

(Clough et al. 2005).

The Bayes’s theorem conditional pdf of the radiometer

brightness temperatures given an atmospheric profile x is as-

sumed to be an uncorrelated Gaussian distribution, with a

specified width sj for each channel, around the observation

vector simulated with a radiative transfer model:

p
cond } exp

�
2
1

2
x2

�
x2 5�

Nchan

j51

[O
j
2H

j
(x)]2

s2
j

, (4)

where Oj is the observation for channel j and Hj(x) is the ra-

diative transfer observational operation. The highly efficient

MCImethod distributes the atmospheric cases according to the

prior pdf, precomputes the radiative transfer, and stores the

simulated observations in a retrieval database. Since the at-

mospheric cases are distributed according to the prior pdf, the

Bayesian posterior pdf is proportional to the conditional pdf

pcond. TheMCI retrievals are the mean of the desired variables

weighted by the Bayesian posterior pdf, which is simply a

weighted sum over the retrieval database cases:

x̂5
�
i

x
i
exp

�
2
1

2
x2
i

�

�
i

exp

�
2
1

2
x2
i

� . (5)

Uncertainties for each retrieved variable are similarly calcu-

lated using the weighted standard deviation.
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When anMCI retrieval does not have enough database cases

that match the observation vector (to within a specified x2),

then an optimization is performed to maximize the posterior

pdf. This usually happens when the observation is from deep

convection. The optimization minimizes a least squares cost

function using gradient information, which is much slower than

MCI. The highly non-Gaussian prior pdf is included in the x2

calculation using a control variable transformation, x 5 G(j),

where j is the control vector and G(j) is the function repre-

sented by the algorithm described in the paragraph surround-

ing Eq. (3). This allows the retrieval to be performed with the

efficient Levenberg–Marquardt least squares minimization

method for the function Hj[G(j)].

b. The BMCI modifications

Themajor changes in the 1D retrieval algorithm from Evans

et al. (2012) are listed below.

d The melting/melted particle hydrometeor component has

been replaced with spherical raindrops, so the three compo-

nents are ice particles, raindrops, and liquid cloud droplets.
d The FASTEM microwave ocean surface emissivity model

(Liu et al. 2011), with its adjoint (gradient) was added. Skin

temperature and surfacewind speedwere added to the control

vector, and prior information for these variables was ob-

tained from the CloudSat ECMWF-AUX(2) data files.
d The temperature profile is now a retrieved variable.
d In addition to the 1-sigma uncertainty for each variable, parts

of the full error covariance matrix may be retrieved.
d ERA-Interim profiles of stratospheric temperature and wa-

ter vapor matched to CloudSat times and locations are

included to complement the CloudSat ECMWF-AUX pro-

files (which only reach 24 km) in the prior pdf.
d The control vector now includes a hydrometeor masking

variable for ice, rain, and liquid cloud. This allows for clear

layers, exactly matching the hydrometeor occurrence prob-

abilities for each layer, and substantially improves the

integrated mass content (e.g., IWP) representation of the

CDF-EOF prior pdf. The masking variable Mk for a par-

ticular hydrometeor type and layer is defined by the dif-

ferentiable indicator function:

M
k
5

1

11 exp[210 000(z
k
2 t

k
)]
, (6)

where zk is the correlated Gaussian element for the masking

variable and tk is the threshold that results in the correct

probability of occurrence for the hydrometeor type and

layer. The masking variable multiplies the corresponding

hydrometeor water content variable:

x
i
5M

k
D21

i [C
i
(z

i
)] forwater content and (7)

x
i
5D21

i [C
i
(z

i
)] forD

me
and dispersion, (8)

where D21
i is the inverse of the CDF for the hydrometeor

property and layer, Ci(zi) is a function that translates the

Gaussian distributed zi to a probability (0 to 1) in a manner

that corrects the biased distribution [ifF(zi) is used] caused by

the correlation between the masking (zk) and hydrometeor

property (zi) control vector elements. Special procedures are

also used to generate the correlation matrix (Cij) elements

pertaining to hydrometeor mask and property variables due

to 1) not including input profiles in the sumwhen a layer does

not have a particular type of hydrometeor and 2) the hydro-

meteor mask variables having binary (0 or 1) values that do

not map onto a Gaussian distribution. Last, a hydrometeor

properties and mask correlation tuning procedure is avail-

able (using rejection of certain input hydrometeor profiles)

to improve the agreement between the radar derived and

CDF-EOF generated water path distributions.
d Prior pdf statistics for warm cloud droplets and raindrops in

tropical cyclones were made by analyzing in situ cloud and

rain microphysical data from 10 flights provided by the

NOAA Hurricane Research Division (HRD). Liquid water

content (LWC) and Dme for cloud droplets were derived

from the Cloud Droplet Probe (CDP) size distributions

(averaged to 1700-m distance), and LWC, Dme, and disper-

sion for raindrops were derived from Precipitation Imaging

Probe (PIP) and Cloud Imaging Probe (CIP) size distribu-

tions (all three probes were made by Droplet Measurement

Technologies).
d The original CloudSat reflectivity profile-based prior pdf

generation was modified to also use GPM Dual-frequency

Precipitation Radar (DPR) reflectivity profiles. When the

simulated hydrometeor 94-GHz two-way attenuation for a

CloudSat profile reaches 5 dB or the layer is below the

freezing level (and the simulated Ku reflectivity is above a

threshold), a matchingDPRprofile is found from a dataset of

233 882 profiles. The DPR profile most closely matching the

simulated Ku reflectivity and transition layer temperature

(from collocated ERA-Interim reanalysis) is selected. At

freezing temperatures, the original ice hydrometeor gener-

ation procedure is used with Cloudsat reflectivity above the

transition level and with the DPR Ku reflectivity below the

transition level. At warmer temperatures, the DPR opera-

tionally retrieved raindrop LWC and Dme are used.
d When operationally retrieved DPR rain profiles are used,

warm liquid cloud profiles consistent with the DPR rain

properties are generated stochastically from statistical lookup

tables. These lookup tables, which include the probability of

liquid cloud occurrence and covarying statistics for LWC and

Dme as a function of rain LWC, are created from the HRD

microphysical samples with a CDF-EOF procedure.
d When CloudSat radar reflectivity is not too attenuated, then

it is used to stochastically generate liquid cloud and rain

(actually drizzle) properties in warm layers from statistical

lookup tables. The three related lookup tables (and corre-

sponding probability of occurrence) are for cloud only, rain

only, and both cloud and rain, and are a function of 94-GHz

unattenuated CloudSat reflectivity. The liquid cloud and/or

rain properties are generated with a CDF-EOF procedure

from the HRD microphysical samples
d Supercooled liquid cloud parameters in the presence of ice

particles are generated with a new procedure using a file of

in situ derived microphysical samples from the Tropical

Composition, Cloud and Climate Coupling experiment (TC4)

(Toon et al. 2010), rather than the previousmethod of using a
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poorly fit Gaussian distribution for T, ln(IWC), ln(LWC),

and ln(Dme,liq).
d The stochastic generation of thin ice cloud layers detected by

CALIPSO lidar but not by CloudSat radar was removed

because they are completely unobservable by microwave

radiometer channels below 300GHz.
d The specific radar profiles used here are from 114 CloudSat

tropical cyclone granules in the Atlantic and eastern Pacific

Ocean with overpasses within 50 km of the cyclone centers

and 218 2 A-DPR files subsetted for hurricanes in the

Atlantic and eastern Pacific.

c. Beam-filling correction

The beam-filling problem in microwave remote sensing of

precipitation (e.g., Kummerow 1998) is caused by the small-

scale variability of precipitation compared to microwave

radiometer footprint sizes, combined with the nonlinear re-

lationship between precipitation and microwave brightness

temperatures. This results in biased estimates of precipitation

when assuming uniformly filled footprints. It is especially im-

portant for sounding instruments, such as ATMS with nadir

footprint sizes ranging from 16 to 75 km.

A beam-filling bias correction procedure was developed to

statistically account for the radiative transfer effects of realistic

rain and ice horizontal variability over large passivemicrowave

footprints. The source of precipitation horizontal variability

statistics is DPR retrievals of liquid (rain) and frozen (ice)

precipitation water path images (49 pixel wide swaths at 5.0 km

resolution) for 218 hurricane overpasses. There are two parts

to the beam-filling correction procedure: 1) encoding of the

DPR water path spatial variability statistics in the form of

EOFs over a maximally sized footprint, and 2) using the water

path EOFs and the 1D profile prior pdf (described above) to

generate stochastic 3D fields of hydrometeor properties in

each footprint. Independent column radiative transfer with

beam weighting over the 3D fields in a footprint is done to

calculate brightness temperatures with hydrometeor variabil-

ity. Uniform footprint brightness temperatures are calculated

from the atmospheric columns averaged over a suitably de-

fined target footprint. The statistics of the difference between

the variable and uniform footprint brightness temperatures are

used to remove the beam-filling bias and increase the assumed

uncertainties in the observed brightness temperatures.

The encoding of the DPR water path spatial variability sta-

tistics is done only once to prepare a footprint water path EOF

file for input to the retrieval program. This procedure is outlined

as a graphical flowchart in Fig. 1. Since the DPR water path

values will be sorted and converted to CDF ranks (or proba-

bilities between 0 and 1), the water path values for non-

precipitating pixels are scaled based on the distance from the

precipitating pixels, rather than all being set to zero. Specifically,

the rain and ice water path images for nonprecipitating clouds

are convolved with a Lorentzian function as follows:

Ŵ
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FIG. 1. A flowchart of the procedure used to generate spatial statistics of rain and ice water path (in the form of EOFs used for the beam-

filling correction) fromDPR retrievals for 218 hurricane overpasses. Each EOF set is for a particular interval (e.g., 0.95, p# 1.00) in the

central pixel rainwater path cumulative distribution.
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where Wrain/ice are the original water path values in images

indexed by i, j or k, l, r25 (xk2 xi)
21 (yl2 yi)

2, andRc5 8 km

is the half-width at half-maximum convolving radius. The

convolved water path values Ŵrain/ice are sorted over all

the DPR overpass images to obtain the CDF function

DrainWP/iceWP(Ŵ) and the corresponding rank values (pij from 0

to 1) for each pixel. These CDF rank values pij are transformed

to Gaussian distributed values with Jij 5 F21(pij) [as above,

F(J) is the cumulative distribution function of the standard

normal distribution].

The spatial variability EOFs are designed to generate a 2D

field of water path in the rest of a footprint, given the central

pixel rain/ice water path Gaussian rank values Jkl,cent. That is,

the EOFs are calculated for the differences in Gaussian rank

values from the central pixel values:

dJ
i2k,j2l

5J
ij
2J

kl,cent
(11)

The Gaussian rank differences (dJ) obviously depend

on the values of the central pixels (Jcent). For example, the

rainwater path field surrounding a very high central column

rainwater path will tend to trend downward with distance

from the footprint center, though at a suitably large distance

it will depend very little on the central value. Therefore,

multiple EOF sets are made that depend on the CDF rank

of the central column (pcent). Here 15 EOF sets are defined

with 5 pcent intervals from 0 to 0.5 and 10 pcent intervals

from 0.5 to 1.

By definition, EOFs are the eigenvectors of a covariance

matrix calculated from a sequence of vectors. Here the vectors

are the dJi2k,j2l for the pixels inside a specified ellipse cen-

tered on the central pixel, but not including the central pixel

itself, for the rain and ice images combined. The mean vector

and covariance matrix for each EOF set are accumulated over

all the feasible central pixels for the specified size ellipse and

over all the DPR overpasses. The EOFs in each set are the

eigenvectors of the covariance matrix, but the mean dJ vector

and the eigenvalues are also needed to generate stochastic rain

and ice water path fields. For ATMS with a maximum nadir

footprint size of 75 km (full-width at half-maximum) and al-

lowing zenith viewing angles up to about 458, the EOF foot-

print size is 280 km by 200 km. The elliptical footprints are 57

by 41 pixels with 1757 columns and an EOF vector length of

3512. For 99% of the variance, 2017–2432 EOFs are required

(depending on the set), resulting in a very large file size for all

15 EOF sets. Undoubtedly, more efficient statistics could be

created by assuming certain symmetries.

The footprint water path EOFs are used in the retrieval

program to generate stochastic 3D atmosphere/hydrometeor

fields inside footprints for the radiative transfer calculation

(see Fig. 2 for a flowchart overview of the procedure). As de-

scribed previously, the water path EOFs are in terms of the

CDF rank differences from the central column. The rain and

precipitating ice water path CDFs used with the EOFs are

calculated from 10 000 randomly generated profiles from the

1D CDF-EOF prior, and the water path CDFs derived from

the DPR retrievals are not used. Precipitating ice is defined

here as the ice water path from 5 to 12 km. The first step in

the footprint column generation procedure is to use the 1D

FIG. 2. A flowchart of the procedure used to generate stochastic 3D fields of atmospheric profiles in radiometer footprints, and the use of

these footprint fields to calculate beam-filling corrections to the brightness temperatures.
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CDF-EOF profile generation algorithm (see section 3a) for the

central column.

The second step is to stochastically generate the rain and ice

water paths for the rest of the footprint columns using the

water path EOFs. The rainwater path is calculated for the

central column, converted to a CDF rank (pcent,rain), and then

used to interpolate between twoEOF sets. AGaussian random

deviate vector is weighted by the EOF amplitudes, multiplied

by the EOF eigenvector matrix, and added to the mean EOF

vector to generate a stochastic vector of Gaussian rank dif-

ferences, dJrainWP/iceWP(Di, Dj). These Gaussian rank differ-

ences are added to the central column values and transformed

with the water path CDF functions to make the 2D field of rain

and ice water path:

W
rain/ice

(Di,Dj)5D21
rainWP/iceWPfF[J

cent,rainWP/iceWP

1dJ
rainWP/iceWP

(Di,Dj)]g. (12)

The third step is to generate stochastic profiles for the rest of

the footprint columns from the central profile 1D control

vector (jcent) and the rain and ice water path Gaussian rank

differences of the columns [dJrainWP/iceWP(Di, Dj)]. First, the
rain or ice hydrometeor mask profile control elements for a

column [jrainMask/iceMask(z, Di, j)] are calculated by perturbing

the central columnmask control elements [jcent,rainMask/iceMask(z)]

by an offset (grain/ice). If the desired water path is zero, then the

mask offset value is set to assure that no layers have hydro-

meteors. Otherwise, the offset grain/ice is the difference between

the mean hydrometeor mask control elements [g(W)] for the

desired water path (obtained from the 10 000 cases in the CDF

calculation) and the vertical mean of the central column con-

trol elements:

g
rain/ice

5 g
rain/ice

[W
rain/ice

(Di,Dj)]2Mean[j
rainWC/iceWC

(z)] and

(13)

j
rainMask/iceMask

(z,Di,Dj)5 j
cent,rainMask/iceMask

(z)1 g
rain/ice

. (14)

Then the control vector elements for the rain and ice water

content in a column [jrainWP/iceWP(z, Di, Dj)] are obtained by

optimizing a factor frain/ice that multiplies the 2D field water

path Gaussian rank differences [dJrainWP/iceWP(Di, Dj)] and is

added to the central column LWC/IWC control elements

[jcent,rainWC/iceWC(z)]:

j
rainWC/iceWC

(z,Di,Dj)5 j
cent,rainMask/iceMask

(z)

1 f
rain/ice

dJ
rainWP/iceWP

(Di,Dj). (15)

These two single variable (frain/ice) optimizations assures that

the column rain and precipitating ice water paths exactlymatch

the desired values from the 2D stochastic footprint water paths.

Finally, most of the other control variable elements (for tem-

perature, water vapor, and hydrometeor properties and masks

in each layer) in the column are adjusted from the central

column values using the variable’s correlation (r in the

Gaussianized rank space) with the rain or ice water content of

that layer and the Gaussian rank differences for rain or ice

water path:

j
par

(z,Di,Dj)5 j
par,cent

(z)1 r
par,rainWC

(z) f
rain

dJ
rainWP

(Di,Dj),

(16)

where par stands for temperature, relative humidity, rain

Dme, liquid cloud mask, and cloud liquid water content. The

rainwater path Gaussian differences (dJrainWP) are used for

the layers where rain is possible. The surface temperature

and wind speed similarly use the correlation with rain LWC in

the lowest layer. The ice water path Gaussian differences

(dJrainWP) are used for the layers where ice is possible or using

the highest ‘‘precipitating ice’’ layer:

j
par

(z,Di,Dj)5 j
par,cent

(z)1 r
par,iceWC

(z)f
ice
dJ

iceWP
(Di,Dj),

(17)

where par stands for temperature, relative humidity, ice Dme,

cloud liquid mask and water content, and ice mask and ice

water content for layers above 12 km. The control vector ele-

ments for the ice and rain size distribution dispersion and the

cloud Dme, which have small effects on microwave radiation,

use the central column values.

Figure 3 illustrates hydrometeor and water vapor water

paths for 10 stochastically generated footprints. These foot-

print images show the detailed horizontal structure of the

hydrometeors and the correlations between the different

hydrometeor types.

Having generated the atmospheric and hydrometeor profiles

for all the columns in a footprint, the radiative transfer can

proceed. The retrieval quantities (e.g., profiles of water vapor

and ice water content) are obtained from the 3D field of

footprint columns using the concept of a target beam. Typically

this target beam will match the footprint (or beam) of some of

the instrument channels at some intermediate scan angle. In

this work the target beam size is 36 km for ATMS and 12 km

for GMI.

Two sets of brightness temperatures (for each instrument

channel and viewing angle) are calculated and output to the

retrieval database: 1) the footprint averaged brightness tem-

perature calculated with 1D radiative transfer on each column

in the footprint (the independent column approximation), and

2) a single 1D radiative transfer calculation for the average

profile over the target beam. The brightness temperatures for

each column are weighted according to an elliptical Gaussian

beam pattern appropriate for each channel and viewing angle.

Only those columns with weights above some value (e.g., 0.06)

enter into the radiative transfer calculation for a particular

channel.

The brightness temperature difference between the uniform

target beam Tb,uniform and the variable footprint average

Tb,variable, denoted by DTbf, is a measure of the beam-filling

error of assuming uniformity for a particular stochastic foot-

print field. The standard deviation and mean of DTbf over all

cases in the retrieval database for each channel and viewing

angle are used for the correction. The beam-filling corrections

are applied differently for the two types of retrievals (MCI and

optimization). In both cases the Bayesian s for each channel is

calculated from a quadrature average of the input uncertainties

and the beam-filling s. Monte Carlo integration retrievals use
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the footprint averaged brightness temperatures (Tb,variable) in

the retrieval database, which include the subfootprint vari-

ability, and therefore the bias correction does not need to be

applied separately. For optimization retrievals, the beam-filling

bias is subtracted from the input observed brightness temper-

atures. The optimization retrievals use the 1D profile genera-

tion procedure, because the control vector does not include

elements that drive the stochastic footprint variability (since

subfootprint variability cannot be retrieved).

Figure 4 shows beam-filling brightness temperature dif-

ference between the uniform target beam brightness tem-

peratures and the variable footprint average brightness

temperatures (DTbf) statistics as a function of either rain or ice

water path for selected GMI channels and ATMS channels at

about 328 viewing zenith angle. In general, the beam-filling

errors are larger for the lower frequency channels with larger

beamwidths (see section 2) and for channels with larger radi-

ative effect from rain or ice water path. The beam-filling effect

is generally positive for rain-sensitive channels and negative

for channels sensitive to ice particles. The standard deviations

and the means (biases) for the 5000 case blocks can be quite

large, often more than 10K for the lowest frequency channels.

The beam-filling errors are smaller when the target beam size

is closer in size to the channel beamwidth. Larger biases are

also associated with larger standard deviations, which can be

explained by the size of the beamwidth. The larger the foot-

print is, the larger is the possibility for mixtures of intense

precipitation and clear sky within the field of view. ATMS

temperature sounding channels (channels 4–15) are only

slightly sensitive to precipitation, and therefore are not shown

in Fig. 4.

4. Data assimilation experiments

The second part of the work was to investigate how the

temperature and humidity profiles retrieved from the BMCI

method can be assimilated into the GEOS forecast system.

Results are shown for several data assimilation experiments

focused on Hurricane Maria (Table 1), a category-5 storm that

affected the Caribbean Sea and southeastern United States

during September and October 2017. For all of the experiments,

the GEOSmodel was run at c360 resolution, corresponding to a

horizontal spacing of approximately 25km at the equator, with

72 vertical levels from the surface to 0.01 hPa (Putman and Lin

2007). The data assimilation was performed at a horizontal

resolution of 50 km using a hybrid four-dimensional ensemble-

variational (4D-EnVar) algorithm with a 6-h update cycle and

32 ensemble members (Todling and El Akkraoui 2018). The

analysis increment was applied as a correction to the back-

ground state using an incremental analysis update procedure.

The control experiment (FP-Ctrl) used the same observing

system configuration as theGEOS real-time production system

at the time of Hurricane Maria, which included clear-sky sat-

ellite microwave and infrared radiances from multiple plat-

forms (including ATMS and GMI), conventional observations

from radiosondes and other sources, Advanced Scatterometer

FIG. 3.Water path (gm22) images for 10 stochastically generated footprints: (top) rain, (topmiddle) ice, (bottom

middle) cloud liquid, and (bottom) water vapor. The bottom color bar is for water vapor images, and the top color

bar is for the rest of the fields.
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(ASCAT) surface winds, and Global Positioning System radio

occultations (GPS-RO).

In addition to the control experiment, three experiments

were conducted assimilating BMCI retrievals of temperature

T, water vapor q, and SST. The first of these (FP1Both) as-

similated BMCI retrievals from both ATMS and GMI in ad-

dition to the observations assimilated in FP-Ctrl. In this

experiment no horizontal thinning was performed for the

BMCI retrievals, but the water vapor profiles were thinned in

the vertical at a resolution of 50 hPa to diminish the effects of

correlated observation error (discussed later in this section).

The second experiment (FP1Both-Thin) also assimilated

BMCI retrievals from ATMS and GMI, but differed in the

way the retrieved observations were thinned. In this case, the

retrievals for all variables were thinned horizontally at a res-

olution of 50 km, while the retrieved profiles of temperature

and water vapor were thinned in the vertical direction at 50 and

100 hPa, respectively. The third experiment with BMCI re-

trievals (FP1ATMS-Thin) is similar to the second experiment,

but the GMI retrievals were excluded from the assimilation

process. A final experiment was conducted assimilating only

conventional data (Conv-Only) to evaluate the impact of sat-

ellite observations in general on the forecasts of Maria.

a. Observation error

One of the advantages of the BMCI technique is that an

estimate of the observation error can be obtained during re-

trieval process (Evans et al. 2012). These estimates were used

during the assimilation process to determine the observation

error. Figure 5 shows an example of the retrieved observation

error correlation matrix for clear-sky and precipitating cases.

As shown in Fig. 5, the retrieved atmospheric temperature

FIG. 4. The beam-filling impact on (a),(b)ATMSand (c),(d)GMI for (left) lower-frequency channels sensitive to liquid and (right) higher-

frequency channels sensitive to ice particles. The solid lines are for bias, and the dashed lines for standard deviation.

TABLE 1. List of data assimilation experiments along with the observations assimilated into each experiment as well as information about

horizontal and vertical thinning.

Expt Obs Horizontal thinning Vertical thinning

FP-Ctrl Standard FP setup 140-km satellite obs

FP1Both FP plus ATMS and GMI retrievals 50 hPa for q

FP1Both-Thin FP plus ATMS and GMI retrievals 50 km for t, q, and SST 100 hPa for q and 50 hPa for t

FP1ATMS-Thin FP plus ATMS retrievals 50 km for t, q, and SST 100 hPa for q and 50 hPa for t

ConvOnly Conventional only
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profiles are vertically correlated over a longer distance in the

middle and upper troposphere than in the stratosphere. For

relative humidity errors in clear profiles there is negative cor-

relation for levels a few km apart in the troposphere (except

around the tropopause), but for precipitating profiles the positive

correlation extends to large vertical distances. Consequently,

in cloudy conditions, the errors for relative humidity profiles

become highly vertically correlated in both lower and upper

troposphere.We assimilated the BMCI retrievals similar to the

way the GSI assimilates radiosonde profiles. GSI currently

considers radiosonde observations from different levels as

single independent observations, therefore only the diagonal

elements of the observation error covariance matrix are used.

This means that vertically correlated observation errors cannot

be taken into account when assimilating these profiles into

GSI. One way to avoid the negative impact from the vertically

correlated observation error was to thin the profiles at different

levels. The DA system only allows uniform thinning for the

entire atmosphere, otherwise the thinning can be performed

differently for lower and upper troposphere.

Figure 6 shows the SST omf values for retrievals assimilated

over the rainband of Hurricane Maria and as shown the dif-

ferences are mostly between 22 and 23K. Although, it is not

possible to validate the BMCI retrievals given the lack of any

reliable datasets over the rainband of tropical cyclones, it is

expected that the first guess for SST is reasonably accurate

given that a large amount of SST information and satellite

observations sensitive to the surface temperature are assimi-

lated into GEOS. However, because of large errors in calcu-

lating sea surface emissivity over cold waters, we discarded all

the ATMS and GMI observations beyond 458N before any

processing.

The difference between the observations and first guess

(known as innovation) for the air temperature is shown in

Fig. 7 for the experiments where the BMCI retrievals were

assimilated. The differences range mostly between21 and 1K.

The innovations are generally positive in lower level, especially

over the rainbands. In mid and upper troposphere, the inno-

vations are only slightly positive over the rainbands, but neg-

ative elsewhere. The experiments with thinned observations

show similar pattern for omf values in mid and lower tropo-

sphere, but in upper troposphere the innovations turn to be

mostly positive. Note that the innovations in Fig. 7 are only

from the ATMS observations, because there was no GMI ob-

servations for the storm during that particular cycle (at

1800 UTC 24 September 2017).

b. Impact on tropical cyclone forecast

The analyzed minimum sea level pressure (SLP) for Hurricane

Maria for the period from 17 September 2017 to 2 October

2017 is shown in Fig. 8. The analyzed minimum SLP was based

on the minimum pressure in a window expanding 28 in east–

west and north–south directions from the storm location pro-

vided in the Tropical Cyclone Vitals (TCVitals) (Trahan and

Sparling 2012). The storm locations in TCVitals and analysis

may not necessary match, but the displacement of the cyclones

in the analysis is expected to be small, less than 100 km as later

shown in this section. Therefore, a window expanding 28 in
each direction should be sufficient to determine the cyclone’s

center in the analysis.

Figure 8 shows the minimum SLP for different experiments

versus the minimum SLP provided in the TCVitals. According

to the TCVitals, the storm initially experienced a rapid inten-

sification such that, just 3 days after the storm was developed,

its center SLP reached 900 hPa on 20 September. The storm

intensity then rapidly decreased so that a day later the storm

minimum SLP was recorded to be 960 hPa. The cyclone

slightly intensified thereafter and reached around 940 hPa on

25 September and then slowly de-intensified until dissipated in

early October. There is a very small difference between dif-

ferent DA experiments in terms of the minimum SLP. In the

DA experiments, the storm slowly intensified and the mini-

mum SLP only reached 960 hPa on 21 September. The model

missed the initial rapid intensification that happened before

FIG. 5. Averaged retrieved error correlationmatrix for temperature and humidity profiles for (a) 942 clear-sky profiles and (b) 383 profiles

with 3000 , IWP , 10 000 gm2. The levels represent altitude in kilometers.
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20 September. The storm in the DA experiments then slightly

weakened with a minimum SLP reaching almost 980 hPa

on 22 September then (after a slight intensification) the

storm intensity slightly decreased until it dissipated in the DA

experiments in early October. Overall the difference between

the minimum SLP in the control experiments and other ex-

periments is less than 10hPa. The difference betweenConvOnly

in which only conventional data are assimilated and FP-Ctrl

FIG. 6. Difference between BMCI retrieved sea surface temperature and first guess provided by GEOS over the rainbands of Hurricane

Maria: (a) FP1Both and (b) FP1ATMS-Thin.

FIG. 7. Observation minus first guess for the BMCI temperature retrievals in different

layers of the atmosphere: (top) 100–70, (middle) 500–400, and (bottom) 1000–925 hPa at

1800 UTC 24 Sep 2017.
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in which satellite data are also assimilated is not as large as was

expected. The main reason probably is that the initiation of

storm is affected by mesoscale atmospheric features that are

well captured when conventional data are assimilated. There

are of course some periods where assimilating satellite obser-

vations relatively lowers the minimum SLP. Generally, run-

ning the experiments at higher resolutions is expected to

produce a stronger storm (lower the center SLP), which may

also increase the impact of the BMCI retrievals on the forecasts

for the storm intensity or track.

Figure 9 shows the mean track and intensity error for all

5-day forecasts started at 0000 UTC for the period of 17–

30 September 2017. Since the location of storm in forecasts can

be significantly different from the real storm location, the

storm minimum SLP was determined as minimum SLP in a

window expanding 58 in each direction from the storm location

provided in TCVitals. Unlike intensity, assimilating satellite

observations remarkably improves the storm track in the

forecast, so that the storm track error is reduced more than

50 km in the first day of the forecast when satellite data are

assimilated (FP-Ctrl vs ConvOnly). The positive impact of

satellite observations increases as the forecast proceeds such

that track error is reduced more than 100 km on average in the

day-5 forecast. The change in track error when the BMCI re-

trievals are assimilated is very small, less than 25 km, which is

comparable to the model grid size. For instance, FP1Both

shows increases in the track error (less than 25 km) during

the first 3 days of the forecasts, then after 3 days, it starts

showing some small improvements compared with the con-

trol experiment. The experiment with thinned observations

(FP1Both-Thin and FP1ATMS-Thin) perform better than

the experiment FP1Both in the forecasts for up to 3 days. This

is probably due to the fact that horizontal and especially more

vigorous vertical thinning reduced correlated errors, which

shows that better tuning of the errors may increase the impact

of the BMCI retrievals on the track and intensity of tropical

cyclones. Figure 9 also shows the mean intensity error for all

forecasts between 17 and 30 September 2017. Again, assimi-

lating satellite observations (FP-Ctrl) only slightly reduces the

intensity error in the forecast, about 5–10 hPa. In terms of in-

tensity, the experiments only slightly differ from the control

experiment in the first 3 days (72 h) of the forecasts. After

3 days, a large variance is observed among the forecasts, and

the FP-Ctrl shows a smaller SLP bias when compared with the

TCVitals, nevertheless the difference between the experiments

is less than 10 hPa. Themodel coarse resolution (almost 25 km)

may play a role in only seeing some small improvements in

intensity forecast when BMCI retrievals are assimilated.

Other important feature of tropical cyclones are the high

magnitude wind speed and the warm core anomaly near the

center of cyclone that occurs because of the release of latent

heat from the water vapor lifted by the convection. The warm

core can be detected using the difference between observed

temperature and a reference temperature representing the

environmental temperature in the absence of the cyclone

(Haurwitz 1935; Durden 2013). We averaged the data over a

108 band on each side of cyclone to calculate the reference

environmental temperature. The zonal wind cross sections along

with the corresponding cross sections of temperature anomaly

FIG. 8. Minimum sea level pressure in the GEOS analysis for

Hurricane Maria.

FIG. 9. Mean (a) track and (b) intensity error for HurricaneMaria for all 5-day forecasts started at 0000UTC between 17 and 30 Sep 2017.
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and horizontal wind magnitude at 850 hPa for Hurricane

Maria are shown in Fig. 10. Comparing the experiments where

the BMCI retrievals are assimilated with the control experi-

ment shows that the storm is intensified in terms of both wind

speed and temperature anomaly when the BMCI retrievals are

assimilated.

In Fig. 10, the control experiment shows a shallow warm core,

while all other experiments show a much deeper warm core.

Overall, a warmer anomaly is seen in the FP1ATMS-Thin with

anomalies of 4.5 K reaching upper levels. In order for model

to generate a stronger storm, the warm core anomaly has to

reach the higher levels (200–300 hPa) and the experiment

FP1ATMS-Thin performs better than other experiments

from that perspective. Although, the eye in FP1Both is

‘‘clear,’’ however, the eye is too wide to represent a category-

5 hurricane, while in the FP1ATMS-Thin a smaller and a

more symmetric eye is seen (see lower panels in Fig. 10). The

narrow eye is also consistent with the storm seen in the visible

images from geostationary satellites for Hurricane Maria.

In a strong tropical cyclone, winds have to be symmetric and

the wind columns need to be vertically aligned, which is the

case for FP1ATMS-Thin. The west side of the storm in

FP1Both and FP1Both-Thin is weaker than in FP1ATMS-

Thin, not representing a well formed category-5 hurricane.

The improvement in the forecast skills for track and intensity

depends on how model can handle the improvement in the

initial conditions. Both experiments with horizontal thinning

show some improvement compared with the experiment

when no thinning was done. This can be due to reducing ei-

ther vertically or horizontally correlated error for tempera-

ture and water vapor profiles.

5. Summary and conclusions

Satellite observations from microwave and infrared instru-

ment are the largest source of observations for the NWP data

assimilation systems. Infrared observations are very sensitive

to clouds so that clouds are largely opaque in the infrared

spectrum in the presence of convection (e.g., in the case of

hurricanes’ rainbands), but microwave observations tend to

provide useful information on the state of the atmosphere even

in the rainbands of tropical cyclones. Although direct assimi-

lation of satellite observations in clear-sky conditions is now

routinely performed at the NWP centers owing to advances in

developing fast radiative transfer models, the direct assimila-

tion of all-sky microwave observations is limited to mostly

shallow clouds. The main limiting factors for direct assimila-

tion of cloud contaminated observations include (i) NWP

models tend not to provide a close first guess for the radia-

tive transfer calculations, (ii) oversimplification of radiative

FIG. 10. Vertical cross section of (top) wind magnitude (m s21; shaded) and temperature

anomaly (K) as well as (bottom) 850-hPa wind speed (color shaded) and sea surface pressure

(hPa; contours). These are for the 2100 UTC 22 Sep 2017 cycle.
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transfer models such as assuming spherical particles for the

clouds, and (iii) lack of inputs such as particles size and shape

and their distribution required by radiative transfer models

to perform accurate scattering calculations. Previous efforts

to retrieve atmospheric state variables from satellite obser-

vations, and then assimilate the retrieved profiles have also

focused on using optimal estimation techniques, which en-

counter the same issue as variational data assimilation

techniques.

We have introduced a novel Bayesian Monte Carlo inte-

gration technique that is capable of retrieving geophysical

variables such as temperature, water vapor, cloud liquid and

ice water content as well as sea surface skin temperature (SST)

and wind speed from passive microwave observations even in

the presence of deep-convective clouds. The main advantages

of the BMCI technique over optimal estimation techniques is

that it does not depend on the first guess provided as back-

ground information and also no minimization between simu-

lated and real observations is performed during the retrieval

process. The BMCI technique can be summarized in three

steps: (i) generating a stochastic database using information

derived from ERA-Interim reanalysis, several spaceborne ac-

tive radar measurements, and cloud probe information from

several campaigns, (ii) simulating satellite observations for

selected instruments and including them in a retrieval data-

base, and (iii) retrieving atmospheric and surface information

such as profiles of temperature, relative humidity and cloud

liquid and ice water content as well as sea surface temperature

using the BMCI technique and real observations. The main

limitations of the BMCI when compared with direct assimila-

tion of all-sky radiances include (i) the need to perform a

separate step to retrieve the products and then assimilate them

into the system and (ii) the fact that the retrieval database

generationmust be changed if themethod is to be used in other

regions of the world.

The method was originally developed by Evans et al. (2012)

to retrieve relative humidity and ice particle parameters from

an airborne submillimeter radiometer. This work extends the

method to also retrieve temperature profiles, rain parameters,

as well as SST and wind speed in tropical cyclones environ-

ments from spaceborne passive microwave observations. In

addition to including new geophysical variables to retrieved

parameters, other major improvements over the method de-

veloped by Evans et al. (2012) include (i) adding a sea surface

emissivity model (FASTEM-6) and its adjoint to be able to

retrieve surface parameters, (ii) using in situ cloud and rain

microphysical data from different hurricane field campaigns

to generate the prior pdf statistics for warm cloud droplets

and raindrops in tropical cyclones, (iii) modifying the prior

PDF generation to use GPM DPR reflectivity profiles when

CloudSat reflectivity is too attenuated, and (iv) implementing a

beam-filling bias correction technique to account for the hor-

izontal variability of hydrometers within the large field-of-

views of microwave radiometers.

A beam-filling correction technique was developed to sta-

tistically account for the radiative transfer effects due to hor-

izontal variability of realistic rain and ice over large passive

microwave footprints. First, the 1D stochastic atmosphere

profile generation algorithm is used to generate the central

column of the footprint from the CDF-EOF prior pdf. The

central column ice and water path and spatial statistics of DPR

retrieved rain and ice water path are then used to generate

stochastic rain and ice water path for the rest of the columns

(each 5 km wide) inside the footprint. All other variables de-

fining the vertical structure of each column (temperature,

water vapor, and rain, ice, and liquid cloud parameters) are

generated using the 1D generation algorithm combined with

the stochastic rain and ice water paths of the column. The ra-

diative transfer calculations are performed individually for

each column, and then the column brightness temperatures are

averaged by weighting by a Gaussian footprint pattern. The

statistics of the differences between the variable and uniform

footprint brightness temperatures are used to account for the

beam-filling bias and to increase the assumed uncertainties in

the observed brightness temperatures.

We have discussed the development of the BMCI retrieval

package and the assimilation of retrieved profiles into a state-

of-the-art NWP model. We explain how the errors associated

with the retrievals can be used to improve the assimilation of

such profiles into NASA’s GEOS forecast system. The main

purpose of this paper was to discuss the improved BMCI re-

trieval method and demonstrate its utility in a modern data

assimilation system and in the context of the full global ob-

serving system. Analyzing the uncertainty values for the

temperature and humidity profiles revealed a significant dif-

ference between the error correlations for the RH profiles for

clear and cloudy conditions. So that, thinning the water vapor

profiles in the height dimension based on the error correla-

tion matrix significantly improved the impact of assimilating

water vapor profiles into GEOS. We performed several ex-

periments with and without the BMCI retrievals including

thinning the retrieved profiles at different vertical and hori-

zontal resolutions. Observations from ATMS and GMI were

used to evaluate the impact of the retrieved profiles on the

horizontal and vertical structure as well as the track and

central pressure of Hurricane Maria in GEOS analyses and

forecasts. The experiments with the BMCI profiles assimi-

lated generally showed a much stronger storm in terms of

both wind speed and storm warm core. However, the impact

on the track and central pressure was minimal. Possible

factors that may limit the impact of the assimilation of the

BMCI retrievals include, the resolution of the model (about

25 km), which was too coarse to show the potential of the

BMCI retrievals in improving the representation of tropical

cyclones in the model forecast and also the data assimilation

system not being able to handle the correlated observation

errors. We are currently conducting data assimilation ex-

periments for several other hurricanes to evaluate the im-

pact of assimilating such observations for different tropical

cyclones.
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